Conformations of Conjugated Hydrocarbons. Part 2.¹ A Spectroscopic and Thermodynamic Study of *cis*- and *trans*-Penta-1,3-diene

By David A. C. Compton and William O. George,* Department of Science, The Polytechnic of Wales, Pontypridd, Mid Glamorgan CF37 1DL

William F. Maddams, The British Petroleum Co. Ltd., Group Research and Development, Sunbury-on-Thames, Middlesex TW16 7LN

Vibrational spectra of both *cis*- and *trans*-penta-1,3-diene have been recorded over a range of temperatures for three phases. Complete vibrational assignments for both compounds have been made and new thermodynamic functions calculated over a range of temperatures by statistical methods. No spectroscopic or thermodynamic evidence of a high energy conformer for either compound has been found. Assignment of torsions leads to values (in kJ mol⁻¹) for *cis*- and *trans*-penta-1,3-diene respectively of 12.3 and 10.4 for the three-fold barrier height V_3 and 133 and 120 for the two-fold barrier parameter V^* .

IN Part 1¹ we investigated the conformational equilibrium present in buta-1,3-diene and 2-methylbuta-1,3diene (isoprene) and concluded from spectroscopic and thermodynamic data that both compounds existed as a mixture of *s*-trans and *s*-cis conformers, to the exclusion of any non-planar gauche forms. The energy difference between conformers (ΔH^{θ}) were found to be 10.4 kJ mol⁻¹ for butadiene and 4.6 for isoprene. Torsional frequencies and barrier heights were calculated for both conformers of isoprene.

Molecular models of cis-penta-1,3-diene show that

severe steric hindrance of the *s*-*cis* conformer occurs by interaction of the methyl hydrogens with a vinyl hydrogen on C-1, and the interaction is severe enough to exclude *gauche* conformers as well, so we would only expect the *s*-*trans* conformer to exist. *trans*-Penta-1,3-diene shows no such exclusion of high energy form.

Hsu and Flygare 2 showed by microwave spectroscopy that the predominant conformer of both compounds is

¹ Part 1, D. A. C. Compton, W. O. George, and W. F. Maddams, *J.C.S. Perkin II*, 1976, 1666.

² S. L. Hsu and W. H. Flygare, J. Chem. Phys., 1970, 52, 1053.

s-trans, and obtained methyl barrier heights of 3.10 and 7.55 kJ mol⁻¹ for cis- and trans-penta-1,3-diene respectively. They searched for evidence of high energy conformers but reported finding none for either compound.

We present complete vibrational spectra and full assignments for both compounds, which lead to a calculation of gas-phase thermodynamic functions over a range of temperatures by statistical methods.

				cis-Pentadien	e		
	Raman (cm ⁻¹	¹)			I.r. (cm	¹)	
Liquid	Solid	Polarisation	Contour	Gas	Liquid	Solid	Matrix isolation
140vw	158	dþ			-		
214vw	230	đp					
		1		212vw	228 vw		
250	310vvw	46	C	959	950		
200m	2040	up cb	P	2027W	200vw	900	200
499	3945 490	sp	D	380III 494	391III 400	38811	390W
402VVW 619	400VVW	sp		404VVW	49000W	610mah	£10m
012W 699	610w	sp	C	600WSH	610wsn	610msn	010m
022W	030W	ap	C	0215	623S	0315	033S
705W	765VW	sp	C	772wsn		765wsh	500
776w	780W	ap	C	7775	7748 850vw	7755	782m
886m	885w	st		884w	886wsb	882wsh	881w
905w	907w	đb	С	905vs	905vs	902vs	9055
00011	0011	ωp	Ũ	954w)	00015	00215	0005
955	960w	mb		958w	955m	953m	951m
000	1 000vw	mp	С	9975	9965	9975	1 004s
1 035w	1 032w	db	Ũ	1 035w	1 030w	1 030w	1 031w
1 043w	1 043w	ա _F ታ		1 055br	1 045vw	1 045vw	1 043vw
1 0100	1 0100	P	в	1 127w	1 129w	1 133vw	1 01010
1 166m	1 165m	Ь	D	1 166w	1 163w	1 163w	1 164w
1 252s	1 2515	P b		1 251w	1 250w	1 250w	1 250w
1 2975	1 2015 1 295m	s h		1 201W	1 200W	1 200W	1 200w
1 361w	1 250	5p 10		1 258w	1 258 1	1 254w	1 356m
1 385m	1 384m	P sh		1 300m	1 384m	1 381m	1 380m
1 4 3 0 1	1 440m	sp mb	Δ	1 427m	1 4990	1 4990	1 4990
1 453m	1450w	<i>ጠ p</i>	11	1 4591	1 4005	1 450	1 450m
1 100111	1540ww	up		1 520	1 520m	1 520w	1 100111
	1 578			1 575w	1 500w	1 590w	
1 504m	1 576VW	ch	٨	1 602	1 5050	1 506	1 5090
1 645ve	1 642110	sp sb	Δ	1 655	1 645m	1 646m	1 649m
1 745	1 745	sp b	A	1 7261	1 7200	1 720m	1 012111
1 760	1 740000	P		1 7300	1 776	1 750W	
1 /09w	1 708w	sp		1 770W	1 770w	1 919m	1.990m
1.007	1.006.	ch	٨	1 019111	1 000	1 012111	1 0200
1 007W	1 900w	sp cb	А	1 001W	1 900 9 964m	1 990w	1 552W
2 001 9 002	2 003	sp 5		2 0 / 4111	2 80411	2 80211	2 808w
2 893 9 010m	2 000 9 010m	<i>p</i>		2 899VW	2 894W	2 092W	2 000w
2 91811	2 91011	sp	C	2 928111	2 922111 9 040-mah	2 92011	2 910m
2 940VW	2 938VW	ap	Cr	2 949W	2 940wsh	2 940W	2 937111
2 909W	2 904W	р		2 970VW	2 970W	2 912W	2 905w 2 982w
2 992w	2 998w	sÞ		2 990wsh	2 994w	2 997w	2 991w
3 010s	3 005s	sb		3 012wsh			3 010w
3 020wsh		-1	в	3 033s	3 024s	3 022s	3 021m
3 052vw	3.050vw	Þ		3 068w	3 054w	3 058w	3 057w
3 087	3 082m	mb	в	3 097m	3 089m	3 090m	3 082m
0.001	0 002m	""P	~	5 00 111	0 000111	0 00011	0 00=111

TABLE 1

Variable temperature n.m.r.3 found no temperature dependence on coupling constants for cis-penta-1,3diene but found a temperature dependence for butadiene, isoprene, and trans-penta-1,3-diene in solution which they explained on the basis of an equilibrium involving a 90° out-of-plane form. This however does not agree with our results in Part 1 on butadiene and isoprene, which we concluded existed as mixtures of planar conformers.

Tarasova and Sverdlov⁴ calculated the vibrational frequencies for both compounds, predicting all frequencies except for the methyl torsion, but they attempted to fit their results to incomplete spectral data.

³ A. L. Segre, L. Zetta, and A. DiCorato, J. Mol. Spectroscopy, 1969, 32, 296.

EXPERIMENTAL

Samples of 99% purity were obtained from Fluka in sealed ampoules. Raman spectra of liquid and solid samples were recorded over a range of temperatures as in Part 1. I.r. spectra were recorded on a Perkin-Elmer 580 spectrophotometer which covers the range 4 000–180 cm^{-1} . Gas samples were held between KBr or polyethylene windows in a 20 cm cell, liquid samples in CsI or polyethylene cells and solid samples in KRS5 cells of varying thickness. A high temperature gas cell of 10 cm path length was used to record i.r. spectra up to 200 °C. I.r. spectra of samples held in argon matrices at 20 K between 600 and $4\ 000\ \mathrm{cm}^{-1}$ were run using an Air Products AC2L cryostat.

⁴ N. V. Tarasova and L. M. Sverdlov, Optika i Spektrosk, Akad. Nauk S.S.S.R., Otdel, Fiz. Mat. Nauk, Sb. Statei, 1967, **3**, 140.

1

Tables 1 and 2 give the complete vibrational spectra of both compounds.

Variable Temperature Studies.—The Raman and i.r. spectra of both compounds were recorded over a range of liquid temperatures from the m.p. to above room temperature. The liquids were frozen and solid spectra recorded window temperature was raised slowly with repeat recording. No spectral changes were observed until new peaks appeared (at *ca.* 35 K) which were assumed to be due to aggregation of the sample molecules as the matrix degraded. No marked differences either in band frequencies or intensities were noticed by altering the matrix : sample ratio,

TADTE	9
LABLE	- Z

trans-Pentadiene

			11	ans-remaine	ile		
	Raman (cm ⁻¹)			I.r. (cm ⁻¹)		
['] Liquid	Solid	Polarisation	Contour	Gas	Liquid	Solid	Matrix isolation
	112w						
150vw	156vw	dp					
202	203w	dp		196vw			
	210vwsh	. d∳		205 vw	205 vw		
265w	268w	dp	С	250m	262m		
392vw		sp		383vw	390vw		
450vw	44 9vw	mр	B?	454w	453w	450w	452vw
479s	483s	sp		483vw	489vw		
522w	516w	sp		530vw			
		-			600wsh		600vw
				630w	631m	632w	630w
			С	698w	700wsh	700w	700w
742vw		sÞ			739vvw	737w	
818w	820w	đp	С	818w	817m	817m	818m
898w	892w	đþ	С	899.0s	896s	892s	896vs
944vvw		mp	C?	948.5m	948m	948m	948m
978vw	975vw	mp		977w	976wsh	973m	974w
		1	С	1 003.3vs	1 000s	1 000s	1 004vs
037w	1 034w	dþ	С	1 048vw	1.040vwsh	1 035wsh	1.037w
082w	1 078vw	sb			1 070vwsh		
170wsh	1 174wsh	mb			1 160wsh	1 175wsh	1 176w
180m	1 184m	sb			1 183w	1 185w	1 188w
262wsh	1 272wsh	<i>b</i>			1 269w	1 269w	1 269w
279s	1 292s	st		1 280	1 280wsh	1 292wsh	1 290w
323vwsh		ог ф		1 200	1 306m	1 306m	1 307m
0201.000		P			1 350vwsh	1 000111	x oo m
378w					1 376m	1 374m	1 379m
415w		Ь	A/B	1 4 20	1 413m	1 411m	1 419m
432vwsh		r d b	112		1 435wsh	1 433m	1 436m
452w		ш _Г ф			1 400m	1 448m	1 440m
1010		P			1 596w	1 598w	1 110111
					1 584web	1 520W	
599w		st		1.608m	1 602m	1 604s	1.606m
663vs		sb	в	1 660m	1 653m	1 657m	1 653m
		۰r	~	1 000111	1 700w	* 00/111	1 000111
					1 723w		
				1 770w	1 762w	1 768w	
			в	1 802m	1 796m	1 800m	1 793m
			~	1 850w	1 850w	1 856w	1 854w
734w	2.730w	st	в	2 742w	2 735w	2 733w	2 735w
855w	2 855w	~ <u>P</u> sh	Ř	2 867w	2 855m	2 859m	2 100W 9 856m
887w	2 887w	5 <i>P</i> 54	Ř	2 8991	2 885m	2 002111 9 885m	2 000000 9 888m
9185	2 916	5 <i>P</i> 54	БУ ВУ	2 000w	2 000m	2 000m	2 000111 9 099
937weh	2 9950	እዋ ፈኡ	C2	2 99111 9 946m	2 91 /111	2 910111 9 097m	2 922111
967 ww	2 070	чp	B	2 010W	2 900111 9 064	4 90/111 9 062	4 942III 9 079
001 V W	2 010W		ъ	2 997111	2 904111 9 000	2 90311	2 973m 9 0001
007s	3 000-	c. b			2 980wsn	2 980wsh	2 980wsn
0018 019	3 0008 3 015	sp	в	2 010-	9 019-	9 01 4-	9.010-
JIZVWSN	3 010VWSD	n p	D	0 U188 2 0501	3 U13S	3 U14S	3 U10s
009	3 030VW	c b	A /D	3 U2UWSN	3 035m	3 039m	3 041m
092W	9 099W	sp	A/B	3 U98m	3 090m	3 090m	3 092m

at liquid nitrogen temperature after careful annealing. High temperature gas i.r. spectra were recorded up to 200 °C. No peaks present in liquid spectra of either compound were absent in the solid spectra in Raman or i.r., and no weak peaks in the liquid or gas spectra intensified on heating. These results led us to assume that neither compound existed as a measurable mixture of conformers.

Matrix Isolated Spectra.—We recorded i.r. spectra of samples deposited in an inert argon matrix at 20 K over a range of concentrations 100: 1-1000: 1 (matrix: sample). The mixtures were sprayed slowly on to the cold window and spectra run at medium (2 cm^{-1}) resolution. Then the

except that higher ratios enabled sharper peaks and better resolution. The frequencies given in Tables 1 and 2 refer to the highest matrix : sample ratio where the peak was observable.

RESULTS AND DISCUSSION

Assignments.—Assignment of the fundamental vibrations of both compounds is simplified by the planar nature of the molecules which cause the 33 fundamentals to be all i.r. and Raman active and fall into two groups 22 A' in-plane polarised vibrations and 11 A'' out-ofplane depolarised vibrations which give C type gas bands contours. The assignments follow the assignments of butadiene and isoprene in Part 1.

A". The central C-C torsion was assigned to the weak dp Raman band present at 150 and 140 cm⁻¹ in the liquid spectrum of *trans*- and *cis*-penta-1,3-diene respectively, which compares with the values obtained for buta-1,3-diene and isoprene of 160 and 165 cm⁻¹ in the liquid state. The methyl torsions were assigned to weak i.r. peaks found to be broad in the liquid and absent in the Raman liquid spectrum, although a very weak shoulder present in the solid spectrum of *trans*-penta-1,3-diene at 210 cm⁻¹ corresponds to methyl torsion. The out-of-plane wags were assigned on the basis of their intense C contour bands in the gas i.r. spectrum and depolarised nature in the Raman.

A'. We did not attempt to characterise the low frequency skeletal modes. It is difficult to assign the two C-C stretches as these appeared to couple in the isoprene molecule and our assignments of the in plane modes between 950 and 1 200 cm⁻¹ are ambiguous. Table 3 shows our selected assignments for both compounds.

Methyl rotation barrier. Hsu and Flygare² measured the methyl barrier heights of cis- and trans-penta-1,3diene as 3.10 and 7.55 kJ mol⁻¹ in the gaseous state.

	· · · · · · · · · · · · · · · · · · ·	/
trans-Penta-1,3-		cis-Penta-1,3-
diene	Vibration	diene
	$A^{\prime\prime}$ out-of-plane vibrations	
150 (L)	=C-C= torsion	140 (L)
196 `´	Skeletal mode	214 (L)
205	Methyl torsion	212
250	Skeletal mode	353
698	cis-CH=CH wag	621
	cis-CH=CH wag	777
899.0	=CH, wag	905
948.5	trans-CH=CH wag	997
1 003.3	trans-CH=CH wag	
1 048	Methyl rock	1 035
1 435 (L)	Methyl deformation	1 452
2 946 `´	Methyl C–H stretch	2 949
	A' in-plane vibrations	
383	Skeletal mode	385
454	Skeletal mode	484
483	Skeletal mode	612 (L)
630	Skeletal mode	772
977	$=CH_2 \operatorname{rock}$	884
1082 (L)	C-CH ₃ stretch	954
1 170 (L)	=C-C= stretch	1 166
1 180 (L)	Methyl rock	1 127
1 280	-CH= bend	$1\ 251$
1 306 (L)	-CH= bend	1 297
1 376 (L)	Methyl sym-deformation	$1\ 358$
1 420	$=CH_2$ scissor	1 390
1449 (L)	Methyl asym-deformation	1 437
1 608	C=C asym-stretch	1 603
1 660	C=C sym-stretch	1 655
2 931	sym methyl C-H stretch	2 928
2 973	asym methyl C-H stretch	2 970
Z 980 (L)	sym = C - H stretch	2 990 2 010 /T \
2 997 (L) 2 010	sym – C–H stretch	3 UIU (L)
3 018	sym -CH= stretch	3 033
3 050	asym –CH= stretch	3 068
3 098	asym =C-H stretch	3 097

TABLE 3

Fundamental frequencies (cm⁻¹)

Durig *et al.*⁵ measured barrier heights in solid *cis*- and *trans*-crotonitrile as 12.9 and 7.36 kJ mol⁻¹, and the

methyl groups in the crotonitriles have similar methyl environments to the pentadienes. In Part 1 we obtained a value of $11.3 \text{ kJ} \text{ mol}^{-1}$ for isoprene which compared well with a microwave value of 11.0, and the methyl group in isoprene is in a similar environment to the methyl group in *cis*-penta-1,3-diene. Our values of 12.25 and $10.38 \text{ kJ} \text{ mol}^{-1}$ for *cis*- and *trans*-pentadiene respectively which were measured from i.r. torsional frequencies are significantly different from those previously measured.² A summary of methyl barrier heights and calculation parameters is given in Table 4.

	TABLE 4	
	Barrier heights	
Two-fold barrier	Ū	
$10^{40} Im/g \ cm^2$	15.936	12.422
F/cm^{-1}	1.757	2.253
ν/cm^{-1}	140	150
V*/kJ mol ^{−1}	133.4	119.5
Three-fold barrier		
$10^{40} r l \alpha/g \text{ cm}^2$	5.087	4.515
F/cm^{-1}	5.502	6.199
ν/cm^{-1}	212	205
$V_3/kJ \text{ mol}^{-1}$	12.25	10.38

Rotational fine structure. An asymmetric rotor may show rotational fine structure on out-of-plane (C type contour) vibrational gas bands if it approximates to either an oblate or prolate rotor, in which the ratio 2C: B has values of 1.0 and 2.0 respectively where A-Care the conventional rotational constants. trans-Penta-1,3-diene approximates to a prolate rotor with a value of 2C: B of 1.88 but *cis*-penta-1,3-diene approximates poorly to a prolate rotor with a value of 1.73. For a prolate rotor satellite bands should be observed with a spacing of 2(A - B).

The rotational constants from microwave measurements ² predict spacings of approximately 1.74 cm^{-1} for *trans*-penta-1,3-diene.

trans-Penta-1,3-diene shows fine structure on all the strong C bands. The trans wag at 1 003 cm⁻¹ shows a series of satellites at higher frequency. A plot of nine peaks between 1 005 and 1 020 cm⁻¹ gave a straight line of slope 1.73 cm⁻¹. Plots of satellites of the trans wag at 948.5 and the vinyl =CH₂ wag at 899 cm⁻¹ gave slopes of similar values.

The close agreement between the predicted spacing of the satellite bands and that observed confirms the structure of the *trans*-penta-1,3-diene molecule as *s*-trans.

We examined the high resolution gas spectrum of *cis*penta-1,3-diene for rotational splitting of the out-ofplane vibrations: however no splitting was observable under the resolution of *ca*. 0.6 cm^{-1} available.

Thermodynamic Calculations.—We calculated the thermodynamic functions for the *s-trans* conformers of both *cis-* and *trans-*pentadiene by normal statistical methods for both compounds. In our calculations we used the structures postulated by Hsu and Flygare,² and we assumed all the fundamentals to be harmonic oscil-

⁵ J. R. Durig, C. K. Tong, C. W. Hawley, and J. Bragin, *J. Phys. Chem.*, 1971, **75**, 44.

1

lators except for the methyl torsions. Thermodynamic contributions for the methyl torsions were calculated using the Tables of Pitzer and Gwinn in refs. 6 and 7. The results are shown in Tables 5 and 6. The previous values for the thermodynamic functions were calculated from other compounds by Kilpatrick et al.⁸ We decided in Part 1 that the values for isoprene calculated in the

In equations (5)—(8) of Part 1 we showed that a mixture of conformers gave rise to higher values of thermodynamic functions than a single conformer,¹ and calculated the concentration of the high energy s-cis conformer of buta-1,3-diene and the energy difference between conformers ΔH_0° .

We also calculated the concentration of s-cis isoprene

TABLE 5 Thermodynamic functions for cis-penta-1,3-diene

	$-(G^{\Theta} - H_0^{\Theta})T$	$^{-1}/J K^{-1} mol^{-1}$	$(H^{\oplus} - H_0^{\oplus})T^{-1}/J \text{ K}^{-1} \text{ mol}^{-1}$		$S^{\bullet}/J K^{-1} mol^{-1}$		$C_{\mathbf{P}}^{\Theta}/J \text{ K}^{-1} \text{ mol}^{-1}$	
	Previous	<u> </u>	Previous	^ <u>_</u>	Previous	~	Previous	~
T/K	work ⁶	This work	work ⁶	This work	work ⁶	This work	work ⁶	This work
273.15		245.65		55.91		301.56		88.93
298.15	263.6	250.68	60.7	58.97	324.1 *	309.64	94.6	95.86
300.0	263.6	251.04	61.1	59.19	324.7	310.24	95.0	96.37
400.0	282.9	269.80	73.2	71.87	356.1	341.66	123.4	123.02
500.0	300.4	287.20	85.8	84.48	386.2	371.69	147.7	146.14
600.0	317.2	303.67	97.9	96.42	415.1	400.09	166.9	165.47
700.0	333.4	319.38	108.8	107.47	442.2	426.85	183.3	181.70
800.0	348.2	334.40	119.2	117.64	467.4	452.04	196.6	195.53
900.0	362.8	348.80	128.4	126.97	491.2	475.78	208.4	207.43
000.0	377.8	362.63	136.8	135.54	514.6	498.18	218.4	217.71
				* 322.8.7				

TABLE 6

Thermodynamic functions for trans-penta-1,3-diene U = 0.7 - 1/1 U = 1 - 1 - 1/U = 0.000 $U = 0^{T-1/T} U^{-1} = 1^{-1}$

	$-(G^{\Theta} - H_0^{\Theta})T^{-1}/J K^{-1} \text{ mol}^{-1} (H^{\Theta} - H_0^{\Theta})T^{-1}/J K^{-1} \text{ mol}^{-1}$			$S^{\Theta}/J \ \mathrm{K}^{-1} \ \mathrm{mol}^{-1}$		$C_{\mathbf{P}^{\Theta}}/\mathbf{J} \ \mathbf{K}^{-1} \ \mathbf{mol}^{-1}$		
T W	Previous		Previous	This work	Previous	This work	Previous	~
IIA	work *	This work	WOLK .	I IIIS WOLK	WOLK .	I IIIS WOLK	WOLK .	This work
273.15		249.84		62.98		312.82		98.66
298.15	255.7	255.52	64.0	66.23	319.7 *	321.75	103.3	105.06
300.0	255.9	255.93	64.4	66.47	320.3	322.40	104.2	105.53
400.0	276.2	276.89	77.8	79.34	354.0	356.24	130.5	130.41
500.0	295.0	295.99	90.8	91.79	385.8	387.78	161.5	162.44
600.0	312.6	313.78	102.5	103.48	415.1	417.26	171.1	171.15
700.0	329.3	330.54	113.4	114.31	442.7	444.86	186.6	187.02
800.0	345.2	346.44	123.4	124.28	468.6	470.72	199.6	200.64
900.0	360.3	361.59	132.6	133.44	492.9	495.03	210.5	212.38
1 000.0	374.5	376.06	141.0	141.87	515.5	517.93	220.1	222.5 6
				* 315.6.7				

same manner⁸ were not adequate, and as our values for entropy and heat capacity are significantly higher for trans-penta-1,3-diene and our value for the heat capacity of cis-penta-1,3-diene is also higher we must assume that their values are too low. Messerley et al.⁹ estimated the gas-phase entropy for both compounds from liquid phase measurements, and these values are also given in Tables 5 and 6.

and the thermodynamic functions for isoprene gas using an experimental value of ΔH_0° . As we obtained no spectroscopic evidence for either cis- or trans-penta-1,3-diene existing in the s-cis conformer we present the thermodynamic functions of the s-trans conformers only of both compounds, with no increase in thermodynamic functions due to a mixture of conformers.

[6/1949 Received, 18th October, 1976]

⁶ D. R. Stull, E. F. Westram, and G. C. Sinke, 'Chemical Thermodynamics of Organic Compounds,' Wiley, New York, 1969. ⁷ G. N. Lewis and M. Randall, 'Thermodynamics,' McGraw-

Hill, New York, 1961.

⁸ J. E. Kilpatrick, C. W. Beckett, E. J. Prosen, K. S. Pitzer,

and F. D. Rossini, J. Res. Nat. Bur. Stand., 1949, 42, 225. * J. F. Messerley, S. T. Todd, and G. B. Guthrie, J. Chem. and Eng. Data, 1970, 15, 227.